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The First, The Biggest, and Other 
Such Considerations 
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We investigate the relation between the underlying dynamics of randomly evolv- 
ing systems and the extrema statistics for such systems. Independent processes, 
Fokker Planck processes and L6vy processes are considered. 
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1. I N T R O D U C T I O N  

1.1. Engineering Appl icat ions of Extrema Stat ist ics 

The study of the statistics of extremes is of impor tance  in a variety of 
problems in engineering and applied physics. One  of the quantities that 
arises frequently in this context is the time when a process first reaches a 
particular large threshold value, i.e., the first passage time to that  threshold. 
An example of a first passage time problem is the time required for a 
mechanical  structure to first reach a critical breaking ampli tude due to ran- 
dom external excitations such as wind, ocean waves, earthquakes,  etc. (~ 12) 
Another  example, encountered in communica t ion  theory, is the time at 
which the fluctuations cause the current or the voltage in a noisy electrical 
circuit to reach a predetermined critical value, i.e., the so-called "false 
alarm" problem. (13 15) A related problem is that  of  the noise-induced 
extreme values attained by the system variables in a given time. For  exam- 
ple, the distribution of the max imum vibrations of  a mechanical  structure is 
critical in determining the accumulated  fatigue damage within that 
structure. (3~ Also, in maintenance  policy decisions the correlat ion of the 
occurrence of  maxima with failure rates has proven very useful. (16,17) 
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The most extensive analysis of the statistics of extreme values has been 
done for independent processes. The first successful application of extreme 
value theory to failure predictions seems to have been made by Weibull (2/ 
with his statistical theory of brittle fracture. Gumbel (1~ and others analyzed 
the extreme values of floods, earthquakes, and other natural phenomena as 
well as failure rates and other operations research problems. A complete 
discussion of the asymptotic distribution of extreme events for independent 
processes has been given by Gumbel. (1) 

The analysis of events that are sufficiently rare so as to be treated as 
independent has heretofore usually been approached as a problem in 
statistics and the processing of time series. The relation between the 
statistics of extremal events and the underlying dynamics of the process has 
not been addressed in most engineering applications. The underlying 
dynamics necessarily introduces correlations between events and deter- 
mines the actual statistics of the rare events. In the latter sense the 
dynamics play an important role even for events that are sufficiently rare as 
to be uncorrelated. 

Linear and nonlinear oscillators excited by white noise provide the 
basis for the study of extremal properties of both electrical and mechanical 
systems.(8 m Numerical methods for determining the first passage 
probability densities and mean time to failure for a linear oscillator system 
have been discussed by Crandall, Chandiramani, and Cook.  (7) The relation 
between this density and the maximum absolute value of the vibrations in a 
time interval (0, t) for such a linear system using a number of analytic 
approximations has been reviewed by Crandall. (6) Roberts (s'9~ has applied 
the Fokker Planck equation approach developed by Stratonovich (5) to the 
determination of the mean first passage time to a critical value of the 
energy envelope of a lightly damped nonlinear oscillator excited by white 
noise. In his predictions he utilized a combination of analysis and 
numerical computation. He has also examined the first passage time to a 
critical level of the amplitude envelope for a linear oscillator with weak 
nonlinear damping. (~~ This problem was originally formulated by 
Stratonovich and investigated rigorously by Khasminskii (21) and by 
Papanicolaou and Kohler. (22) As pointed out by Roberts (1~ there has 
heretofore been no exact, closed-form solution to the first passage problem 
for even the simplest engineering systems. 

There are, of course, many dynamical processes that are not diffusive, 
including any process that is not local in time and/or space. (23 25) An exam- 
ple is a viscoelastic material with memory, whose modes of failure can 
therefore not be obtained from a Fokker Planck description. There seems 
to be a complete lack of analysis of the extremal properties of such systems 
in the engineering literature. 
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In this paper we deal with four areas of interest in engineering 
applications of extremal distributions. The first area is that of statistics of 
extremes of independent events, and is one that finds routine implemen- 
tation in engineering design problems. We review the standard theory and 
discuss some applications in Section 2. The second area, having to do with 
dependent statistical processes described by Fokke~Planck equations, is 
less well known but has appeared in a number of guises in modeling 
generic processeS assumed to be important in engineering applications. We 
discuss these processes in Section 3, in particular with the view of 
providing simple analytic expressions for the extrema properties of a 
Fokker Planck system. The third area, that of dependent processes 
described by a L6vy distribution (in space or in time), seems to be virtually 
unexplored in engineering applications. We discuss such processes in Sec- 
tion 4. The fourth topic, addressed in Section 5, is implicit in many 
applications. Therein we distinguish between processes that "fail" with cer- 
tainty at a precise level (e.g., a false alarm that sounds when a current 
exceeds a preassigned specific value), and those whose "failure" occurs with 
a given probability at each level (e.g., a material that fails due to the 
presence of cracks of varying sizes and spatial locations). We summarize 
our results in Section 6. 

1.2. D e f i n i t i o n s  ~18 20,26) 

Let X(t) be a continuous random variable that depends on the time t 
and let w(x, t Ix0)dx be the probability that X(t) lies in the interval 
(x, x +dx) without ever having crossed the boundary x =  ~/ in the time 
interval (0, t) given the initial state X(O)= Xo. We define a random variable 
Y(t) to be the largest value achieved by X(t) in this time interval, 

Y(t) = max {X(t), 0 ~< r ~< t} (1.1) 

The cumulative distribution function defined by 

fO/,tlXo) = dxw(x, tlXo) (1.2) 
L 

where xL is the lower boundary of the state space occupied by the process, 
has the probabilistic interpretation 

F(q, t l Xo) = Prob{ Y(t) < qi X(0) = Xo} (1.3) 

Alternatively, we can also interpret the cumulative distribution function as 

F(q, ttXo)= Prob{ T(q)> tlX(O)= xo} (1.4) 
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where T(t/) is the time when the random variable first crosses x = q, i.e., 

T(q) = min{z ] X(r) = tt } (1.5) 

Two useful definitions obtained from F(t/, t ixo) are the maxima and first 
passage time densities 

tlxo)d~l=d~l~nF(tl, t lXo)=Prob{ t /<  Y(t)<q+d~[X(O)=xo} (1.6) 0(~, 
/ 

and 

q~(tl, t l Xo) dt - -clt ~t f(t/, t l Xo) = Prob{t < T(t/) ~< t + dt ] Y(0) = Xo} (1.7) 

The cumulative distribution function F(t/, t LXo) as well as the densities 
(1.6) and (1.7) are Green's functions for processes with arbitrary initial 
conditions. Averaging over an initial distribution p(xo) gives 

;x' F(t/, t ) =  dxof(tl, t lxo)p(xo)=Prob[Y(t)<t l]  = P r o b [ T ( t / ) > t ]  (1.8) 
L 

tp(tl, t ) -  dx o t)(~l, tlxo) p(xo)= F(q, t) (1.9) 
L 

and 

~?F , q~9/,t)= dxo~O(~t, t l x o ) p ( x o ) = - ~  (~l t) (1.10) 
L 

U g  

With these distributions we can calculate the moments of the extremal 
properties. The conditional nth moment of the first passage time dis- 
tribution is 

fo o fo Tn(r/] Xo) = dtt'(p(tl, t lXo)=n dtt" 1f(rl, t]Xo) (1.11) 

The conditional moments of the distribution of maxima are 

f) ;/ Y~(t I x0) = drlqn~(rl, t lXo)=x~+n dqtl n l[1-F(rl ,  ttXo)] (1.12) 
L L 

The extremal moments averaged over an initial distribution are denoted by 
Tn(tt) and Y,(t). 

Another function that is often encountered in applications of extrema 
statistics to data sets is the hazard function (27'2s) 

~o(~, t) 
h(,7, t ) = - -  (1.13) 

F(,7, t) 
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This is the probability density that the process will reach t/for the first time 
in the interval (t, t + dt). From the definition (1.10) of the first passage time 
density it follows that the survival probability is related to the hazard 
function by 

F(t/, t ) = e x p  -- dzh(t/, ~) (1.14) 

In practice it is often impossible to associate a single level q with a sur- 
vival probability. Rather, to a given value of q there corresponds a 
probability P0t) of survival. The average probability of survival is then 
given by 

fo F(t ) -  dqp(q)F(tl, t) (1.15) 

2. I N D E P E N D E N T  P R O C E S S E S  

2.1.  M e t h o d o l o g y  

The theory of extremal behavior has been most completely developed 
for independent random variables/1) The underlying reason for this has 
been the notion that events that are sufficiently rare are necessarily 
statistically independent of one another. Thus, although the underlying 
process may be continuous in time, the statistics of extrema have been 
traditionally dealt with in terms of variables defined for discrete times. We 
will therefore state results in terms of discrete time processes and take the 
continuous time limit where appropriate. We note that this discrete sampl- 
ing explains why the theory of extrema has traditionally been viewed as a 
problem in statistical data analysis rather than one in probability theory. 

Let the set {Xj}, j=  1 ..... m denote a sequence of m observations of a 
process. The J(j are taken to be identically and continuously distributed, 
mutually independent random variables. We can define the cumulative dis- 
tribution analogous to (1.3) as 

F(t/, m) - Prob{ T(r/) > mAt} (2.2) 

where At is the time between measurements and T(r/) is defined by (1.5) 
with -c- jAt ,  and in analogy with (1.7) we can define 

Atq~176  rn<T(tl)At < m + l }  (2.3) 

Clearly the above quantities do not depend on the "initial" state for these 
independent observations. 
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Let P(x) be the cumulative distribution function for each of the ran- 
dom variables Xj and let p(x) be the corresponding probability density: 

P(x)=-Prob{Xj<x},  j =  1, 2,..., m (2.4) 

p(x) = d P(x) (2.5) 
a x  

The probability P(x) must here be viewed as a phen0menological represen- 
tation of the unspecified underlying dynamical process. In subsequent sec- 
tions we relate P(x) to the underlying dynamical process. The 
phenomenol0gical distribution P(x) contains all the information that one 
needs to determine the extremal statistics of the set {Xj}. Thus the 
cumulative distribution (2.2) is simply the joint probability that each obser- 
vation does not exceed v/, i.e., 

F(r/, m ) =  [P(v/)] m (2.6) 

from which it follows that 

Atcp(vl, m) = [ p(q) ]m [1 - P(v/)] (2.7) 

The mean first passage time to r/in this discrete representation is given by 

TI(Vl)=A t ~ mcp(rl, m ) - - - A t  (2.8) 
�9 m : 0  1 - P ( v / )  

Inverting (2.8) to express P01) in terms of Tl(t/) allows us to rewrite (2.6) 
a s  

_ 1 F(r / ,m)= 1 Tl(q)] (2.9) 

Setting m = t/At and taking the limit At --* O, [i.e., the limit of many obser- 
vations in the time interval (0, t)] yields 

F(vl, t) --* e t/TI(~) (2.10) 

This exponential form for the cumulative distribution is characteristic of 
independent events. 

The functional dependence of the cumulative distribution on v/ 
depends, of course, o n  the particular process as manifest in the v/depen- 
dence of Tl(t/), or, equivalently, of P(v/). It is possible to provide a general 
classification of the asymptotic (i.e., large v/) behavior of the cumulative dis- 
tribution (2.10). This can be done because the asymptotic behavior is 
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dominated by the tails of the phenomenological distribution P(t/) and is 
insensitive to other details of its structure. There are three general classes of 
asymptotic distributions. These classes are called "types-I,  -II, and -III 
extreme values." The type-I extreme value distribution requires that P(t/) 
decrease at least exponentially with increasing t/ in the sense that 
P(t/) ~< exp [ - f ( r / ) ] ,  where f(t/) ~< (In ~/)a with a > 1. Examples of dis- 
tributions P(r/) leading to this class of distributions of extrema are: normal, 
log-normal, gamma, and Weibull. A type-II extreme value distribution 
occurs when POD does not possess finite central moments. For example, 
power-law distributions and L6vy distributions belong in this class. The 
type-III distributions arise from P(r/)'s that are bounded in the direction of 
the extreme Value (i.e., bounded above for maxima and bounded below for 
minima). Thus the distributions appropriate for type-I extrema when trun- 
cated yield type-III extrema. 

An interesting feature of these three types of extrema distributions is 
that each one is characterized by a universal form. Let 

F ( y ) -  lira F(~/, t) (2.11) 
t ~ o o  

where y is defined below for each type of asymptotic distribution. For type~ 
I extreme values one has 

where 
F ( y )  = e ~-> 

and ~j and flj are defined by the relations 

1 
P ( g )  = 1 - -  

J 

= J d P ( x )  

% dx  x = #j 

For type-II extreme values with y ~> 0, 

F ( y ) = e x p [ - 1 / y ~ ] ,  

where 

(2.12) 

(2.13) 

(2.14a) 

(2.14b) 

c~>0 (2.15) 

y = ~ / / v j  (2.16) 

and vj is the expected largest value in a sample of size j and is given by the 
relation 

P(t/) = 1 - 7  \ ~ /  (2.17) 
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The specific value of c~ depends on the distribution P(r/) but is independent 
ofj .  The third class of extrema is characterized by the form 

where 

F(y)=exp[-(-y)~], c~>O (2.18) 

/ \ w - r /  y=~-~7-~_vj ) for - o o  <r/~<w (2.19) 

and vj is again given by (2.17). The j-independent parameter c~ in (2.18) is 
defined as the order of the lowest derivative of the probability function that 
does not vanish at the upper bound r/= w. We note that (2.18) is of the 
Weibull form. 

In the engineering literature one often encounters discussions of 
lifetimes, failures, and reliability in terms of these extremal types of 
distribution.(1-17,27 3o) The distribution that enters in these discussions is the 
average survival probability given by (1.15). The variable y in these 
applications is directly proportional to the time (i.e., to j=_t/At). Thus, 
although one often finds survival probabilities with a type-IH distribution 
(cf. below), one must carefully distinguish whether the distribution is in a 
variable y as defined in (2.19) or whether the distribution comes about by 
averaging over q. 

2.2. Some Applications 

The utility of the three types of distributions just discussed can be 
demonstrated by considering a number of data sets from a variety of 
phenomena. We choose examples that illustrate each of the limiting univer- 
sal forms. 

The pioneer of systematic data analysis from the point of view of 
extremal types of distributions was Emile Gumbel. (1~ He determined that a 
large variety of meteorological and geophysical phenomena are well 
described by the limiting form type-I. Examples treated by Gumbel and 
others (27-31) include daily rainfalls and snowfalls, temperature extremes, 
wind speed, largest earthquakes, and air pollution levels. Gumbel pop- 
ularized the notion of constructing specialized graph paper with axes such 
that F(y) plotted against r/yields a straight line. In Fig. 1 we condense over 
1300 years of data on the maximum and minimum heights of the Nile 
River on type-I graph paper/31) The abscissa is the maximum or minimum 
height r/, while the lower ordinate is the probability of reaching that 
extreme value r/as the number of observations becomes very large. For the 
minima distribution the straight line corresponds to the distribution 
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Correspondingly, the river m a x i m u m  reaches a value of 20 m every 200 ys. Of course, owing 
to fluctuations in the river maxima,  this latter prediction is less reliable than the former. (~t) 
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function (2.12) with the parameter values fls=9.4 and ~j=0.28, with 
j =  1300. The upper ordinate is the recurrence time between two obser- 
vations of a given level. Both of these extremal events do yield (at least 
approximately) a straight line. However, from the figure it is seen that the 
prediction of droughts (river minimum for each year) is more reliable than 
that of the flood level (river maximum). It is of course of equal practical 
importance to be able to accurately predict minimal and maximal levels of 
water discharge: the former is important for pollution control; both are 
important for agricultural irrigation. 

A more contemporary application of type-I distributions is to the 
pollution levels in the atmosphere. Figure 2 shows observed S02 concen- 
tration levels at Long Beach, California for the 19-year period 1956 to 
1974. (27) The data were grouped on both a monthly basis and a yearly 
basis. Both sets of data yield straight lines on Gumbel paper, with the 
ordinate being the maximum pollution level ~/ and the abscissa the 
probability of reaching that level. The monthly data has parameters 
~j=0.115 and /~j=14.5 with j=228 ;  for the yearly data c~j=0.081 and 
/~j= 31.5, with j =  19. Two interesting features of this analysis should be 
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noted. First, if one used the parameters from the monthly data to estimate 
the maximal yearly pollution (dashed line), one would overestimate the 
larger maximum pollution level probabilities and underestimate the low 
ones. Secondly, we note that the maximum monthly pollution levels are 
lower than those predicted by the type-I line for small and for large values 
of q. The effect of this is that the theory "saturates" at lower maximal 
values than does the data. For  example, the theory would predict a very 
small probability of a 100 pphm concentration of S02 because the 
probability that the maximal pollution is greater than 70 pphm is already 
in the 0.1 percentile. The data would suggest that these higher concen- 
trations are more likely than this. 

As a third and final example of a type-I distribution, we present in 
Figure 3 the yearly maximum wind speed in London, Ontario for the 23- 
year period 1939-1961. (27) The straight line has the parameters c~j = 1/3 and 
/3j = 17, with j = 23. 

Whereas data fits to type-I distributions are readily available in the 
engineering literature, it is more difficult to find processes that have been 
analyzed directly in terms of type-II or type-III distributions. It is not clear 
whether this situation indicates that the latter types do not give an accurate 
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representation of data, or whether it is in fact often not possible to dis- 
tinguish among fits using the three types of distributions. (32) As an exam- 
ple, consider the data for the probability distribution of the magnitude of 
earthquakes in the Aleutian Islands region shown in Fig. 4. On the figure it 
is apparent that both the type-I and the type-Ill distributions overlay the 
data, with the second fitting slightly better. 

A type-II distribution has been used to fit the annual extreme 
significant wave-height data for 12 Ocean Station Vessels. (33) This data is 
shown in Fig. 5, where the logarithm of the significant wave height is 
shown to be described by a type-I distribution. This implies that the 
significant wave height itself follows a type-II distribution. 

One example of the direct application of the type-III (Weibull) dis- 
tribution occurs in the analysis of the fatigue failure of ductile materials. 
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The cumulative probability for failure can be related to the distribution of 
crack lengths in the material. This distribution is shown in Fig. 6 on type- 
III probability paper. (34) The abscissa is the square root of the ratio of the 
crack length to the average crack length. 

One often finds the Weibull distribution for averaged survival 
probabilities as defined in Equation (1.15). For instance, the distribution of 
failure times of a certain type of thrust bearing under high-temperature 
conditions is given in terms of the "reliability function" 

F(t) = e - o . o o 3 s s y 5  

where x is a dimensionless time. (28) A lifetime distribution study of flame 
nozzles in a particular type of industrial furnace similarly gives 

F(t) = e  0"00178XL8 

where again x is a dimensionless time. 128) Many other such examples can 
be found in the literature. 
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3. F O K K E R - P L A N C K  P R O C E S S E S  

In this section we deal with dynamical processes X(t) that are 
correlated at different times, i.e., X(t) and X(v) are not independent even 
for t # v. We shall consider the "weakest" such dependence, that being a 
differential Markov  process. Such processes can be defined by systems of 
stochastic rate equations with fluctuations having particular correlation 
properties to be given subsequently. We further restrict our discussion in 
this section to processes in which the average change in X(t) is small when 
t changes by a small amount  At,  i.e., processes for which 

E[X( t  + At )  - X(t)]  = O(At)  (3.1a) 

E [X( t  + At) + X(t -- A t )  -- 2X(t)] = O(At)  (3.1b) 
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but higher-order differences are of higher order in At. Here E denotes the 
expectation value. Such processes can be described by a differential 
equation in phase space, i.e., by a Fokke~Planck  equation./35'36) 

3.1.  S i n g l e - V a r i a b l e  S y s t e m s  

Consider a single-variable dynamical process described by the 
"Langevin equation" 

2 =  ml(Y) - �89 + [m2(X)] 1/2 f(t) (3.2) 

Here the dot indicates a time derivative and the prime a derivative with 
respect to the state variable Y. The fluctuating function f ( t )  is taken to be a 
zero-centered Gaussian-distributed random variable with correlation 
function 

( f ( t )  f ( t ' ) )  = 2 6 ( t -  t') (3.3) 

The brackets ( ) denote an average over an ensemble of realizations of 
the fluctuations f( t ) .  The property (3.3) is a necessary condition for (3.2) to 
describe a Markov process. The extremal statistics of the process X(t) are, 
as before, embodied in two types of questions: 

1. At what time T(t/) does X(t) first achieve a preassigned level q? 

2. What is the highest value Y(t) achieved by X(z) in the preassigned 
time interval 0 ~< r ~< t? 

One of many possible examples of the application of such models is in 
the area of population growth. For  instance, let N(t) be the instantaneous 
population whose isolated growth can be described by an equation of the 
form (37) 

dN 
dt kNG(N/O) (3.4) 

where G(N/~) is a saturation-inducing growth law which limits the 
population to a maximum value N = 0. A useful form of this function is 

G ( N / O )  = [1 - (N/O)~]/c~ (3.5) 

The choice c~ = 0 leads to the Gompertz  equation, while c~ = 1 gives the 
Verhulst equation, now more commonly referred to as the logistic 
equation. Equation (3.4) does not account for the variability of the 
environment as manifest in random fuctuat ions in, for example, the food 

822/42/1-2-15 
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supply, the birth and death rates, immigration and emigration, etc. These 
effects can be incorporated through a fluctuating growth parameter 
resulting in the stochastic rate equation (~9'37) 

~ =  kNG(N/~9) + eNf(t) (3.6) 

where ~ is a measure of the strength of the stochastic rate parameter. The 
fluctuations in (3.5) allow the population N(t) to exceed ~9 or to go to 
extinction with finite probabilities. The linear N dependence of the 
fluctuations insures (not uniquely) that fluctuations do not create a 
population if none is there and that N(t) remain positive. This behavior is 
due to the fact that dN/dt = 0 when N(t)= O. 

The maximum and first passage time statistics are of interest for at 
least two reasons. First, foreknowledge of the possibility of a large fluc- 
tuation in a population and of its most probable magnitude allows for 
advanced planning. Second, the maxima and first passage times are sen- 
sitive probes that allow the determination of the validity of the parameters 
of a model such as 0, ~, and e in Eqs. (3.5) and (3.6). 

Equation (3.6) is, of course, of the form (3.2) with the identifications 

] 
rn2(N ) = 2e2N 2 (3.7b) 

Let us now return to Eq. (3.2). This process has an equivalent phase 
space description in terms of the conditional probability W(x, t[ Xo) dx that 
the dynamical variable X(t) is in the interval (x, x + dx) given the initial 
value X ( 0 ) = x  o. Because the fluctuations f(t) in (3.2) are Gaussian and 
delta-correlated, the first and second moments of the process X(t) satisfy 
(3.1) and the higher-order differences are indeed of higher order in At. The 
evolution of the probability density W,-  W(x, t Ix0) is then given [using 
the Stratonovich interpretation of (3.2) (5'36~] by the Fokker-Planck 
equation 

~ 6 2 
~t W , -  0x [ml(x) W,] +~-Sx 2 [m2(x) W,] (3.8) 

together with appropriate boundary conditions and the initial condition 
W(x,O[xo)=6(X-Xo). In Equation (3.8) the term containing ml(x) 
describes the systematic or average evolution of the system, i.e., the "drift," 
while the second derivative term describes the dispersion about the 
systematic evolution due to fluctuations. Therefore m2(x) can be viewed as 
a "diffusion coefficient" that may be state dependent. In the dynamic 
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equation (3.2) m2(X) gives rise to state-dependent fluctuations that have a 
nonzero average value (([mdX)]l/zf(t))r The term [-m'2(X)/2] 
exactly compensates for this nonvanishing average so that mdX) alone is 
the "drift." In the subsequent analysis we will need the steady state solution 
of (3.8), given by 

Wss(x)=,  lim~oo W(x, t l x 0 ) = m - - ~ e x  p d x ' ~ ]  (3.9) 

where c is the normalization constant determined by the condition 

I w~(x) dx = 1 (3.10) 

and f2 denotes the range of the variable x. 
The probability density w,-w(x,  t lx0) appropriate to (3.2) with the 

additional constraint that X(r) has not crossed the vaiue x = t/for 0 ~< r ~< t 
satisfies Eq. (3.8), 

0 e9 c~ 2 
w, = --~xx [ml(x) w,] + ~ x  2 [mR(X ) Wt] (3.11) 

with the absorbing boundary condition 

w(t/, t l Xo) = 0 (3.12) 

and an appropriate lower boundary condition. (38) As for (3.8), the initial 
condition for (3.11) is w(x, Olxo)=6(X-Xo). 

For processes described by the evolution equation (3.11) the moments 
(2.7) of the first passage time distribution satisfy a hierarchy of equations 
that follow directly from the backward Kolmogorov equation (~8 2o.38) 

~ ~2 
~twt=m~(xo)-~xoW,+m2(xo)c3x---~o w, , (3.13) 

Multiplying (3.13) by nt n- 1 and integrating over x from the lower boun- 
dary xL to t/ and over t from 0 to oo yields the exact equation 

a 2 ~3 Tn(r / lXo)=-nTn l(t/iXo) m2(xo) ax---~o Tn(t/I Xo) + ml(xo) ~Xo (3.14) 

with To(t/JXo) = 1. The boundary conditions for (3.14) are 

T,(t/[ t/) = 0 (3.15a) 
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and 

o~ ~x-- T~(~ lXo) l xo=  x~ = 0 (3.15b) 

In writing (3.15b) we have assumed the lower boundary to be reflecting. 
Equation (3.14) can be solved exactly for the mean first passage time 
TI(r/[ x0): 

fx [S~L ws*(Y) dy] TI(~/jXo) = dz (3.16) 
0 mz(z) w~(z) 

For large q one can evaluate the integral (3.16) asymptotically, thereby 
obtaining a closed-form expression for the mean first passage time/18 2o) 

To illustrate the utility of (3.16) let us return to our population exam- 
ple (3.5). With the identifications (3.7) in (3.9) we obtain for c~>0 the 
steady state distribution 

Wss(N) = F ~  exp 

where 
a - k/~2E 2 (3.18) 

and where N is the phase space level of the population. The mean first 
passage time to N =  tt can then be obtained with (3.17) and (3.7b) in (3.16). 
For t/~> No and t/>> 0 the dominant contribution to the mean first passage 
time is from the neighborhood of z ~ i/. For these values of z the numerator 
of the z integrand in (3.16) is approximately unity and (19~ 

Tl(~l)~F(a)a~-"c~ZfdNexp a - (c~a+ 1) In 
-5- 

~F(a)a,_ac~a(~)exp[a(~)~-(c~a+l)ln(~)] 

[ac~ ( ~ ) ~ - (  c~a+ 1) 1 

~§ .-. (3.19) 
ac~ 

and is independent of No. The dominant contribution to the mean first 
passage time is 

Tl(tl) ~ F(a) a a~ exp[a(tl/O) ~] (3.20) 
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For ~ = 0 (Gompertz growth law) the steady state distribution is 

( k "~ 1/2 

and the asymptotic mean first passage time then is (19) 

T,(,)_(2.k~i/2exp[k(ln~)'/2~'l [ 1 ~2 
\s'.] [~In (~)-1] kln (~) 

(3.21) 

�9 . ]  (3.22) 

The extremal properties of the process (3.2) are of course not 
exhausted by the mean first passage time or even the higher passage time 
moments [cf. Eq. (3.14)]. Of equal interest is the distribution of the 
maximum (minimum) value achieved by X(~) in a given time interval 
0 ~< ~ ~< t. To investigate the properties of this distribution we again examine 
the evolution equation (3.11). Equation (3.11) is a parabolic partial dif- 
ferential equation whose solution can be expressed as the eigenfunction 
expansion 

w(x, t/Xo)= ~ W~s(x) Un(x) Un(x~ -~'' (3.23) 
, =o N, 

where 

(~mnNn = d x  Wss(x ) Urn(x) U,(x) (3.24) 
L 

The eigenfunctions Un(x) and the eigenvalues 2, satisfy the differential 
equation 

d2Un(x) 
mz(x) d-~ t - m l ( x ) ~  +2"U'(x)=O (3.25) 

subject to the boundary condition 

Ws,(,7) U,(,7) = 0 (3.26) 

and an appropriate boundary condition at xc. Equation (3.25) can be 
rewritten in the self-adjoint form 

_ [ dv.(x)] d a(x) + ,t. W, l x )  U.(x) = 0 
dx dx J 

(3.27) 
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where 

a(x) ~ m2(x) Wss(X) (3.28) 

If cr(x) and W~(x) are positive functions with a finite number of poles, then 
the differential equation (3.27) is of the Sturm Liouvitle type and the 
eigenvalues 2n are real, nondegenerate, nonnegative, and may be ordered 
such that 2o<21 < 2 2 <  "" .  

The eigenfunction-eigenvalue problem (3.27) is in general quite dif- 
ficult to solve. However, it turns out that if one is only interested in the 
occurrence of rare events, e.g., in the extremum Y(t) at long times t or the 
first passage time T(q) for large t/, then under appropriate initial conditions 
it is sufficient to evaluate only the lowest eigenvalue ,~o(q). ~ No other 
eigenvalues or eigenfunctions are needed. The initial distribution w(xo) that 
yields this result is one that is near the steady state, i.e., W(Xo)~- Wss(Xo) for 
xL ~< x0 < 1/. Here t /must  be sufficiently large that 

f ~ dx Ws,( x ) ~ l (3.29) 

The cumulative distribution of extrema 
approximation given by 

(1.5) is then to a good 

F(r/, t) --- e tx0(,) (3.30) 

for all times t. It then follows from (1.8) that the moments of the first 
passage time distribution are given by 

Tn(q ) -~ n !/[2o(q ) ]" (3.31 ) 

= n! [ T~(r/)]n (3.32) 

The remarkable outcome of this analysis is that the extrema dis- 
tribution (3.30) is therefore completely specified by the mean first passage 
time: 

F(r/, t) ~ e -'/rl~'~) (3.33) 

Since the mean first passage time is completely determined through 
Eq. (3.16), one need not determine 2o(r/) by solving the eigenfunction-eigen- 
value problem (3.25). 

The form of (3.33) is noteworthy in that it is identical to that obtained 
in Eq. (2.15) for independent random variables. This identity reflects the 
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mutual independence of rare events if the underlying process is correlated 
over times much shorter than the mean first passage time Tl(tt). It should 
be noted that although the same in form, the present theory of dependent 
processes enables us to establish the relation between Tl(r/) and the 
underlying dynamic structure of the process. In our earlier discussion of 
independent events T1(t/) had to be taken as a functional representation of 
the data. Thus, provided that the dynamical model (3.8) is applicable, the 
present results enables us to interpret the data. 

It is more difficult to make general statements about the asymptotic 
behavior of maximum moments than about first passage time moments. 
This situation is a result of our lack of knowledge of the cumulative dis- 
tribution F(q, t) for all q: the form (3.33) is only valid for large t/ (and all 
t). It is nevertheless possible to conclude that for t ~> t~ (defined below) the 
mean maximum and higher moments are approximately given by (18 2o) 

f Yn(t)~-x~+n dtlrl, 1 [ 1 _  e t/rl(~)], t>tc (3.34) 
L 

The time tc is given by the relation 

tc -~ rl(~0) (3.35) 

where t/o is the smallest t/ for which the condition (3.29) is valid. The 
approximation (3.34) is acceptable because the dominant contributions to 
the integral come from values of ~/ for which (3.33) is valid. For  a fixed 
value of t > to, the accuracy of (3.34) decreases with increasing order n. It 
should also be observed that for large t the mean maximum Yl(t) is a good 
measure of the distribution of maxima. The variance of the maximum dis- 
tribution tends to zero: 

r2(t)- U(t) 
lim * 0 (3.36) 

This is in marked contrast with the first passage time distribution which 
has the variance 

lim ,1  (3.37) 
~ o ~  ~(~)  

Thus the first passage time distribution is quite broad and TI(r/) is not a 
good measure of it. 

Returning to our population example, we calculate the mean 
maximum population in the time interval (0, t) using (3.20) and (3.22) in 
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(3.34) with n = 1. To actually carry out the I/integration in (3.34) it is con- 
venient to consider the time derivative (19/ 

(3.38) 

The integrand of (3.38) for ~ > 0  is sharply peaked about its maximum 
time-dependent value tImax because Tl(r/) is a rapidly monotonically 
decreasing function [cf. (3.20)] and therefore we integrate (3.38) using 
Laplace's method. The value of ?]max is the solution of the equation 
t = Tl(r /max ). We then obtain 

Yl(t) (2rc)l/2~ eea  2 -  1/~ (In kt) 1/~ (3.39) 

to within a constant. A similar analysis for c~ = 0 gives 

(27C) 1/2 k~ 
Y l ( t )  ee 2 exp[(2e 2 In k t / k )  1/2 ] (3.40) 

It is important to emphasize that the extremal measures Tn(t/) and 
Y,(t) are sensitive to the forms of the drift and diffusion functions in the 
dynamic equations. Thus these measures can serve as probes into the 
underlying dynamic structure of the system. 

3.2. Two-Var iab le  Systems 

The approach reviewed in Section 3.1 is not directly generalizable to 
systems described by more than one dynamical variable. However, in 
weakly damped physical systems there are nearly conserved quantities 
whose variation in time is slower than that of the dynamical variables. If a 
single such quantity can be identified, e.g., the total energy or the 
amplitude of an oscillation, then the dynamical description can be reduced 
to one for this single degree of freedom and the previous approach can be 
implemented.(S 11,19,2o) 

As an example for this procedure we consider a lightly damped anhar- 
monic oscillator driven by a stochastic force f ( t ) :  

k = P (3.41) 

/5 = -2Q(X,  P)  - G ( X )  + e f ( t )  (3.42) 
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Here X(t) is the displacement of the oscillator, 2Q(X, P) and G(X) are 
damping and restoring forces, respectively, and )o is a damping parameter. 
The fluctuations f ( t)  are defined as before. 

Such an oscillator is used as a model system in a large variety of 
engineering applications. Some of these are: wind-generated ocean waves, 
where X(t) is the vertical displacement of the ocean surface and f ( t)  
represents the incoherent pressure fluctuations from the wind, (39'4~ the 
horizontal structural response J((t) to ground motion during earthquakes 
in which f ( t)  models the ground motion, (4143) the electrical voltage X(t) 
across a circuit driven by stray voltage fluctuations f( t) ,  (15'44) ocean wave 
platform and/or pile design where Jr(t) is the displacement response of the 
structure to the loading f ( t)  produced by the water waves. (4) 

The dynamic system (3.42) has the equivalent phase space description 

Qt Wt= --P-~x+-@p [2Q(x,p)+G(x)] +e 2 W, (3.43) 

where Wt dxdp =- W(x, p, t lxo, Po) dx dp is the probability that X(t) and 
P(t) lie in the phase space interval (x, p; x +  dx, p+ dp) given the initial 
state X(0)= xo and P(0 )=  Po. 

In many applications, such as those mentioned above, one is interested 
in the earliest time t when the absolute displacement IX(t)[ of the oscillator 
attains a threshold value xc, i.e., the first passage time to a specified boun- 
dary. The difficulties associated with obtaining the first passage time 
statistics of X(t) for an oscillator described by (3.41) and (3.42) are well 
known. (7-11'19'2~ It has so far not been possible to obtain first passage 
time statistics since one cannot construct a well-posed boundary value 
problem for Eq. (3.43). Traditionally this difficulty is circumvented by con- 
structing an approximate equation for a single "slow" variable such as the 
energy or the amplitude envelope of the oscillator. (5~ The first passage time 
to attain a critical energy E C or critical amplitude A c is then studied by 
solving this approximate single variable Fokker-Planck equation. The first 
passage time to Ec or to A C provides a lower bound for the first passage 
time to the absolute displacement Xc. 

Several authors (5'7 11,19,20) have obtained approximate Fokker-Planck 
equations for the energy and amplitude envelopes of lightly damped non- 
linear oscillators. The equation for the energy envelope probability density 
W(E, t l Eo)= W(E, t) is 

0 W(E, t)= z - e  2 e 2 -  W(E, t) (3.44) 
+ OE 2 
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where the energy E is defined through the relation 

E--  �89 + u(x) (3.45) 

u(x) is the potential energy of the oscillator, 

u(x) = fx G(x') dx' (3.46) 

and the other functions appearing in (3.44) are 

dx 
q)'(E)= 5 >,(x) [ E -  u(x) ] 1/2 (3.47) 

q~( E) = re .  u~x~ dx[ E--  u(x)] 1/2 (3.48) 

O(E) = dx Q(x, {21-E- u(x)] }1/2) (3.49) 
> u(x) 

The integrations in (3.47)-(3.49) are carried out over all x for which the 
square root [ E - u ( x ) ]  1/2 is real. The Fokker-Planck equation for the 
amplitude envelope is often used when u(x) is a harmonic potential, i.e., 
G(x) = COgx, and is given by 

0 W ( A , t ) = { - ~ I ) ~ C ( A )  e2 ] e 2 02 } 
Ot COo 2A-CO~ + 2CO~2o ~ W( A, t) 

where 

(3.50a) 

Q(x, p) = p (3.52b) 

A = (x 2 + p2/co2)1/2 (3.50b) 

and C(A) is defined in terms of the nonlinear damping as 

C(A) = -~-~ Q(A cos 0, -co0A sin 0) sin OdO (3.51) 

Of course E=co~A 2 and hence (2co2oA) - I  W(A, t )=  W(E, t). 
The theory developed in the previous section can now be brought to 

bear by properly identifying the functions m 1 and m 2 appearing in (3.8). 
For instance, let us take the restoring potential to have a single stable fixed 
point at x = 0 and to have the form 

G(x) = k IxL m sgn x (3.52a) 

and let us take the damping to be linear, 
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Then 

(m+ 1) 
ml(E ) = ~;2 _ 2 ~ 2E 

(m+ 1) 
m2(E) = 4 ~ e2E 

(3.53) 

(3.54) 

Using these forms in (3.9) and (3.16) with x c = O  and performing an 
asymptotic expansion for large E c we find (2~ 

(3m Ai- 5~( l~2 ~(m+3)l(2m+2)e;tEcl~ 2 
TI(Ec) ~ I" k2m + 2]LXE<] 

I (m + 3) E2 ] 
X l + ( 2 m + 2 )  2E + " "  (3.55) 

The first passage time to energy Ec provides a lower bound for the first 
passage time to the absolute displacement xc. These threshold values are 
related by Eq. (3.45) with p = 0 ,  i.e., 

k 
E c _  m +  l X c m+l (3.56) 

so that 
",'L, , 1 r f 3 m  + 5~[a2(m + 1)] (m+3)/(2m+2) e[?k/eZ(m+t)]x'm+l(m + 3)/2 

[ e 2 ( m + 3 ) ( m + l )  1 2 2  tc x 1-~ .2Xc + ""  (3.57) 

Let us now present the leading terms for the mean first passage time 
results just obtained for specific restoring forces. For a linear oscillator 
(m = 1) (3.57) reduces to 

2e e e &xj2a- 
TLl(X~) 22k x~ 2 (3.58) 

where kl/2=_O9o is the natural frequency of the linear oscillator. 
Equation (3.58) is a well-known linear oscillator result and blends 
smoothly into exact numerical results when kU2x2/e 2 >3.5 for .~/k 1/2= 0.02 
and 0.16. For an anharmonic oscillator with m = 3 we obtain 

r';(Xc) ~/~(; ,2 4)7/(4~2~ 3/4 e )'kx4/4e2 (3.59) 
\-~-/ x<3 
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The heavy dots in Figure 7 indicate the numerical simulations of Roberts 
-4 where for In 2T~(x<) versus x c 

2<=\4--je2 j \ ~ )  xc (3.60) 

The curve is calculated from Eq. (3.59). Our curve begins at the value 
ffc=2.40 (ff4=33.18) because the contributions of the corrections to 
Eq. (3.59) are smaller than 2% beyond this value and decrease as 2< -4. The 
agreement with Roberts' numerical simulations is clear, ours lying slightly 
below his. Note that in the range of values of ~< in this figure all terms 
explicitly shown in (3.59) must be retained. Thus this expression provides 
an analytic representation for the mean first passage time in the region 
where computer costs for doing numerical simulations become prohibitive. 

I 0  , , , I I I I I 

r -  
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2 

O I I I I I I I I 

0 20 40 60 80 

r14 
Fig. 7. Mean first passage time for power  law oscillator with m = 3. Solid curve: Eq. (3.59); 

circles: Roberts '  numerical  simulation/z~ 
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We can now use the mean first passage time result (3.55) to calculate the 
maximum energy envelope moments from (3.34). Using Laplace's method 
for evaluating the integral for 01(0 [cf. (3.38)] we obtain for the mean 
maximum e~(t) the asymptotic result (2~ 

,~2 
e~(t) ~ in 2t (3.61) 

A similar calculation of the mean square maximum energy e2(t) yields 

e2( t )~ ( ~ )  2 (ln 2t ) 2 (3.62) 

indicating that the variance vanishes as t ~ oe. The distribution of the 
maximum energy is therefore narrow at long times, consistent with the 
results of the previous section. Equation (3.61) provides an upper bound 
for the mean maximum displacement 21(t): 

2k ln(2t)) 1/(m+1~ (3.63) 
~l(t)<~ ( m + l ) e  2 

We have carried out a similar analysis for the linearly damped Duffing 
oscillator, i.e., (2o~ 

G(x) = o)~x + kx 3 (3.64) 

In this case we obtain the mean first passage time for the energy envelope 

1 I"(]2 + 1 ) e ;'Ec/~2 
T,(Ec) ~ (ZE~/e2)~, (1 - e2t~/2Ec) (3.65) 

where # is a parameter that lies in the interval 1/2 < # ~< 1 whose precise 
value is determined by k and e) o. This expression is of the same form as 
(3.55) but here # replaces the m-dependent numerical factors. The com- 
parison of (3.65) with Roberts' numerical simulations are shown in Fig. 8. 

The third nonlinear oscillator that we consider using these techniques 
has a harmonic restoring potential, (2~ 

G(x) = ooZx 

but a nonlinear dissipation 

Q(x, p)= p[ I + K [p] m] 

(3.66a) 

The analysis is done using the amplitude envelope (3,50b) rather than the 
energy envelope (3.45) so that direct comparisons with Roberts' numerical 

(3.66b) 
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Fig. 8. Mean first passage time for the Duffing oscillator with kD/2m 4 = 0.2 and # = 1. Solid 
curve: Eq. (3.65); circles: Roberts' numerical simulationJ 2~ 

ca lcula t ions  can be made.  The funct ion C(A) defined in (3.51) is then given 
by  

C ( A ) =  + /r K(o)oA) m+l F ~ F ( m + 3 )  (3.67) 

The  s teady state so lu t ion  to the F o k k e r - P l a n c k  equa t ion  (3.50a) is 

Ws,(A)=TmAexp[ ~ ~5 A -- I'~ 2 flmAm+21 (3.68) 

where ])m is the no rma l i za t i on  cons tan t  and  

.~:2 m+2 2m+3 [ [mb3\]2/  
(3.69) 
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The mean first passage time to a large amplitude Ac is then found to be (2~ 

2 [{2co~)1/2 [ --1 TI(A<)~L\-j- ) A Z - l + f l m ( m + 2 ) A  m+2 

"4' 2 2 m + 2  
x exp cooA c +/~,~A c (3.70) 

F o r  m = 1 we c o m p a r e  the resul t  (3.70) wi th  the n u m e r i c a l  s i m u l a t i o n s  of 

Robe r t s  in Fig. 9. The  two resul ts  are i n d i s t i n g u i s h a b l e  a n d  hence  on ly  a 
single l ine is shown.  

t , - ,  
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4 -  

2 -  
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0 

Fig. 9. 
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(2 3 
Mean first passage time for the nonlinearly damped oscillator, Eq. (3.70), with 

m = 1, Yl = 1.414, and ]~1 = 0.1414J2~ 
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The mean first passage time results can, as before, be used to calculate 
maxima moments. In particular, the mean maximum amplitude al(t) and 
the mean square maximum a2(t) are found to be 

/ e2 ~1/2 
a l ( t ) ~ / 7 - ~ ]  (In Xl) 1/(m+ 2) (3.71) 

\z~oU 

and 

a2(t)~(~@o ) (ln 2t) 2/~m+2> (3.72) 

Again the variance [-a2(t)- a21(t)]/a2(t) vanishes asymptotically. 

3.3. Limiting Distr ibut ion 

In engineering applications which utilize the assumption of indepen- 
dence of observations there is an implicit ambiguity in the specification of 
the minimum length of the time interval between observations that will 
insure independence. The minimum length depends on the underlying 
dynamics. For the Fokker-Planck processes considered in this section we 
have in effect specified this measure: it is given by the time t,.= Tl(r/0) 
defined in Eq. (3.35). 

A second question that is of importance in engineering applications is 
the asymptotic form of the distribution of extrema. We have seen in Sec- 
tion 2 that one obtains one of the three classes of asymptotes, type-I, -II, or 
-III, depending on the functional form of T~(~/). For the Markov processes 
considered in this section one finds that the requirement of normalizability 
of the probability density Ws~ constrains the dependence of T~ on t/ 
through (3.16). In particular, for large ~/we have argued that 

Tl(n)-f"dz W~l(Z)-cf'dzerdxml(x~/m2(x) (3.73) m2(z) 

Since normalizability of W,,(x) requires that ml(x)/m2(x)>~ 0[-(ln x) a] with 
a > 0 ,  (3.73) implies that Tl(t/)~exp[f(~/)] where f01)>(ln~/) a. This is 
precisely the condition that leads to a type-I asymptotic maxima dis- 
tribution. We therefore conclude that (2.12) is the appropriate limiting dis- 
tribution for Fokker-Planck processes with the P(~) that enters (2.14) 
related to Tl(r/) calculated in this section via (2.8). 
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4. LEVY PROCESSES 

We have so far restricted our attention to dependent processes that are 
local in space and in time, i.e., to "continuous stochastic processes." In this 
section we consider the extrema statistics of a class of processes that are 
"discontinuous," i.e., nonlocal in space or in time. This class was first exten- 
sively studied by P. L6vy and so we refer to its members as L6vy 
processes. (46)  

The evolution of the continuous process of the previous section was 
describable by means of a partial differential equation for the probability 
density W(x, ttXo) [cf. Eq. (3.8)]. It is not possible to construct a differen- 
tial representation for a L~vy process. Rather, an integral representation for 
it becomes necessary. To specify the form of the processes to be considered, 
let us define a random variable Y that depends on an index z. The process 
is assumed to satisfy the chain condition (25) 

f 
oo 

w(y, z)= ely' w ( y -  y', z - s )  w(y', ~') 
- - o o  

(4.1) 

where W(y, z) is the probability that Y ( z ) -  Y(O) = y. Processes that satisfy 
the chain condition (4.1) are Markovian. The characteristic function 
(p(u, z) is defined as the Fourier transform of the probability density, i.e., 

i 
v 

(p(U, Z) = dy eiuyW(y, Z) 
- -  o o  

(4.2) 

For processes satisfying the chain rule (4.1), ~o(u, z) obeys the product rule 

q~(u, z) = ~o(u, z - z ' )  ~p(u, z') (4.3) 

and is therefore an infinitely divisible stable distribution. The most general 
form of q~(u, z) for such distributions was obtained by L6vy, (46) and 
Khinchine and L6vy. (47) One can verify by direct substitution that the form 

(p(u, z) = e-bZlUl~ (4.4) 

satisfies the product rule (4.3) and is the form of the Ldvy distribution for a 
symmetric process if the parameters # and b obey the restrictions b ~> 0 and 
0~#~<2 .  

One of the important properties of L6vy distributions is that, except 
for /~ = 2, the distributions W(y, z) do not possess finite y moments of all 
orders. This is most directly seen from the fact that for z > 0 and # < 2 (25) 

lim W(y, z)~#bzF(#) sin(~#/2)/~[yl u+ l (4.5) 
y ~  o O  

822/42/1-2-16 
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Thus, all v moments defined by 

f 
~ 

( lyl  ~ ) = dyly l~W(y,z)  (4.6) 

are finite for v < # and are infinite for v ~> #. In particular, the variance is 
infinite. This behavior is in marked contrast to that of the solutions of the 
Fokker-Planck equations discussed in the preceding section. It is worthy of 
note that power-law distributions of the form (4.5) lead to type-II extremal 
distributions for independent random variables [cf. (2.17)and (2.15)]. 

Even though L6vy distributions are characterized by an apparently 
simple equation [cf. (4.4)], there are a number of difficulties in 
understanding the system-specific implications of these distributions. 
Firstly, the probability density W(y, z) cannot be evaluated in closed form 
except for special choices of the parameter #.(25) Apart from the familiar 
Gaussian (# = 2) and the Cauchy (# = t) cases, only a very few other one- 
dimensional distributions have been constructed. The second difficulty is 
that it is not possible to construct simple evolution equations of the 
Fokke~Planck-type for the probability density, i.e., equations involving 
c~ W/&. Such first derivative equations in general contain integral operators 
in the y variable. For example, when # # 2 the evolution equation can be 
shown to be of the form (23) 

c3 b f~  W(y', z) (4.7) c3--~ W(y, z)=-Tz sin(=#/2) F ( # +  1) -~  dy' ] y _ y , [ , + ,  

This equation has the form of a master equation with a long-range interac- 
tion: Expansion of (4.7) in a Kramers Moyal series leads to derivative 
terms of all orders that cannot be approximated by a truncation at second 
order. 

A number of additional interesting properties of L6vy distributions are 
worth mentioning. From the inverse Fourier transform of (4.4), 

f~3 1 e bzl"l'~e i"Ydu (4.8) w(; ,  z) = G  _o~ 

one immediately verifies the scaling relation 

w(pl/~y, & ) = ~-  :/ .w(y, z) (4.9) 

This relation implies that if the process Y(z) is a random variable with 
probability density W(y, z) then the two random variables Y(flz) and 
fll/"Y(z) have the same distribution. This scaling relation establishes that 
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irregularities are generated at each scale in a statistically identical manner. 
This scaling is a type of self-similarity and is one of the defining properties 
of a fractal process. (48) 

Another property of interest is the probability that Y(z) is outside 
some interval ( - y ,  y) at fixed z: 

Prob(I Y(z)l > y) c ;nst  as y ~  oo (4.10) 

which is obtained by integration of (4.5) and is a hyperbolic distribution. 
Such distributions preserve self-similarity and have trajectories with fractal 
dimensionality D. Thus the L6vy process with exponent/~ has a trajectory 
Y(z) versus z of fractal dimensionality D = 2 - 1/~ (if ~t < 1/2 then D -= 0). 
Fractal processes in Euclidean dimension 1 and D < 1 (i.e., # < 1) are not 
space-filling, i.e., in order to maintain the scaling property such a fractal 
process can only occupy y space in clustered or localized patches. (23'25'48) 

4.1.  F rac ta l  " S p a t i a l "  P r o c e s s e s  

Let us consider processes for which we identify the variable z with 
physical time (z = t). We are then interested in calculating the first passage 
time distribution of the random variable Y(z) = X(t) to a prescribed level t/ 
and the distribution of maximum values attained by X(v) in a time interval 
0 ~< v ~< t. A dynamical description of this process is given by the stochastic 
differential equation 

X(t) = f ( t )  (4.11 

where f ( t )  is a 6-correlated L6vy process. Unfortunately, the techniques 
developed for Fokker Planck processes are not applicable except for # = 2, 
where (4.8) describes a diffusive process [i.e., one with m l ( x ) = 0  and 
m z ( x  ) = const]. (Note that the homogeneity of the process in x implies the 
absence of a "potential" so that there is no drift.) The reason for this failure 
is that the processes considered here with # < 2 involve long-range trans- 
itions and therefore may bypass any localized absorbing barrier without 
ever encountering it. The first passage time distribution to t/ can therefore 
not be represented as a solution to a boundary value problem. 

No one has yet devised an exact method for determining the extremal 
properties of L6vy processes. Since X(t) is (by construction) a symmetric 
variable we will consider absolute extremal properties, e.g., the first passage 
time to Ix] = r/ and the absolute maximum value of X(r) in the time inter- 
val 0~<r ~<t. The definitions of Section !.2 are then modified by the 
replacement of the lower limits xL by -~/. One can estimate such proper- 
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ties via a scaling argument and a sequence of approximations that improve 
the coefficients of the scaled quantity. The simplest approximation 
procedure for calculating the mean first passage time TI(t/) rests on the 
assumption that one can replace the (conditional) probability w(x, t) 
appearing in (1.2) by W(x,  t) for a L6vy process. With this approximation 
the mean first passage time to t/is given by (23) 

;o ~ fo f ~ Tl(tl) - F(r l, t) dt ~- dt W(x,  t) dx (4.12) 

Introducing the scaled variables 2=x/ r l ,  ~ =  url and i=b t / t l "  and sub- 
stituting (4.8)into (4.12)yields 

~ C /1  I' 

q 

d2e - ifx - el~l"] (4.13a) 

(4.13b) 

Thus TI(t/) scales as t/~ according to this approximation. However, the 
coefficient C,  obtained from (4.13a) is finite only when ~t < 1 as can be seen 
by examining the singularities in the integrand of (4.13a) after integrating 
over i. The integral is thus finite only for "transient" processes (i.e., those 
which have a zero probability of return to the origin) because the 
probability of return after leaving the interval ( - t / ,  t/) is small in this case. 
F o r / t  > 1 the process is "persistent" (i.e., has a finite probability of return 
to the origin). The estimate provided by (4.12) then leads to a divergent 
coefficient C~. The most stringent test of this method in the range 0 ~< y ~< 1 
is the boundary y = 1 (the least transient processes in this range). At this 
boundary one finds C1 = re, i.e., 

7C 
T,(r/) = ~  q (4.14) 

The next level of approximation is to replace F(t/, t) in (4.12) by a 
probability 

F(r/, t)~- f ~ w(x, t) (4.15) 

where w(x, t) is the probability density in the presence of absorbing points 
within an interval dx around + t /and  around -r/ .  This eliminates at least 
those realizations that actually impinge on these intervals from returning 
into the range ix] < r/. For 0 ~< # ~< 1 we expect the mean first passage time 
obtained from (4.15) to be close to that obtained from (4.13). For per- 
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sistent processes (1 <#~<2) where (4.13) fails we expect that (4.15) will 
provide a finite estimate of C,.  The replacement (4.15) is of course exact 
for /~=2.  

The technical problem which remains is to determine the probability 
density in the presence of boundaries, w(x, t), when a differential descrip- 
tion is not appropriate. A technique which has proven to be successful is 
the method of images. (24'25'49) In this method "image densities" are 
introduced in such a way that w(t/, t ) = w ( - t t ,  t ) = 0  at all times. One 
requires an infinite number of images and is therefore led to a solution in 
the form of an infinite series. When this series is substituted into (4.15) one 
obtains(Z3,2s~ 

- ~ ,=o (2T+ i-) exp [_ 2t/ b t (4.16) 

The mean first passage time is then given by (4.13b) with 

2 2+~ ~ ( - 1 ) '  (4.17) 
C ~ -  2rc1+~ (2/+ 1) 1+~ 

/ = 0  

For # = 1 and for # = 2 this series can be evaluated exactly. For the former 
one obtains (23) 

18G ] T~(q)= q ~ (4.18) 

where G is the Catalan constant 0.915956 .... The coefficient of ~/in (4.18) is 
about one quarter of that in (4.14). The exact mean first passage time for 
/~ = 1 has been calculated by Kac and Pollard (s~ and is given by 

Tl(t l)=tl /b (4.19) 

For # = 2 (4.17) yields 

Tl(q) = q2/2b (4.20) 

which is of course the exact result for a diffusion process. 
The approximations given above suggest that further improvement in 

the estimation of the first passage time can be obtained by considering 
larger absorbing intervals at the edge of the boundary. This absorbing 
interval would further suppress the reentry of the process into the interval 
Ixl < ~. 

As in the previous section, we can use the mean first passage time to 
calculate the asymptotic form of the absolute maxima moments by sub- 
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stituting either (4.16) or the even cruder approximation made in (4.12) into 
(1.12) with xL replaced by zero. With (4.16) one obtains the fractional 
moment of order e as 

Y~(t)  = A~ t ~/~ (4.21) 

provided ~ < #. The constant As is given by the series 

4~rc~' lb~/U 
[ ~  0 ~ (4.22) A s -  F(~/v )  ~o dO 1 ~  ( - 1 ) t ( 2 / + l )  ~ ' 

where 0 = U ( t b )  1/z If c~ >~ # this integral diverges and so does the moment 
Y~(t). In particular, all integer moments beyond the first diverge for a L6vy 
process, and the absolute maximum is finite only for # > 1. 

4.2. Fractal "Tempora l "  Processes 

Now we consider processes for which we identify the variable y with 
times (y = t). Whereas in the previous section the process unfolded con- 
tinuously in time but could make discontinuous or long-range jumps in 
"space," here the process unfolds continuously in space but erratically or 
intermittently in time. This intermittency is often introduced by considering 
the state space (z = x) to be discrete and by defining a waiting distribution 
0(t) for the time t between transitions among the discrete states. If 0(t) is a 
distribution whose first moment diverges, then the process is temporally 
fractal. For instance, consider a spatially diffusive process (as an 
appropriate limit of the discrete process) with intermittent transitions 
described by a waiting time distribution whose Laplace transform is 

~ p ( s ) = f o e - S , O ( t ) d t = [  1 / / S ' 2 ' u l  - 1 

J 
where 2 is a rate parameter and 0 < # < 1/2. It has been shown (24'52) that 
the characteristic function qb(q, c0) for the first passage time distribution to 
a level Ixl =tl  for this process is given by ~0(r/, t) [cf. (1.10)] 

qS(r/, ~o)=e b~lo~l~ (4.24) 

where b is given by cos(rc#/2) /D 1/2 and D,  is a generalized diffusion coef- 
ficient. This characteristic function has the form (4.4) and therefore the first 
passage time distribution obeys the chain condition (4.1): 

q)(tl, t) = dt' ~O(tl - t f  , t - -  t ') ~o(~l', t ') (4.25) 



The First, The Biggest . . . .  2 3 7  

The equation that describes the evolution of W(x, t) corresponding to the 
process with this first passage time distribution is (24) 

D~ ~2 fo W(x, t') (4.26) W(x, t )=6(x)- t -  F(2#------) ax 2 dt' I t_t , i  I 2~ 

with 0 < # < 1/2. 
The mean first passage time to Ix[ = t7 is evaluated using (4.24). From 

(4.11) one sees that Tl(t/) is the derivative of (4.24) with respect to co 
evaluated at co = 0. Since # < 1/2, this derivative diverges and therefore the 
mean first passage time is infinite. This divergence is a consequence of the 
temporal clustering of the process. The intermittency of the process implies 
long periods of quiescence that dominate the extremal moments. 

5. DISTRIBUTED FAILURE (OR S U C C E S S )  LEVELS 

In Sections 2 4  we have established that for processes that are 
Markov in time the asymptotic cumulative distribution or survival 
probability F(r/, t) has the form 

F(t 1, t)= ~ cte ~t(~), (5.1) 
/ = 0  

In many applications the failure (or success) can indeed be characterized 
by a single value of t/. Thus, for instance, a false alarm will be sounded at 
this preassigned level; a river will flood when its height ~ exceeds the 
embankment and a wave will break when its slope exceeds a critical value. 
In other applications a distribution of values for t /may  be more represen- 
tative of the behavior of an ensemble of systems. Thus, for example, a 
mechanical structure may have a range of possible failure modes each with 
an appropriate failure probability. The response of individuals to levels of 
toxins in the environment is similarly distributed. In these latter examples 
one is interested in the average survival probability 

F(t) =- dt 1 p(tl) F(t l, t) (5.2) 

and the corresponding net mean first passage time 

:r, _ a~ p(~) r , (~)  (5.3) 

where p(~/) is the probability of failure (or success) when the process 
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reaches the interval (r/, rl+dtl). A commonly chosen p(r/) is the Poisson 
form 

p(tl) = 2Fe 2r~ (5.4) 

Another example is the (restricted) Gaussian 

p(t/) = 4(7/~) ~/2 e 4)'r/2 (5.5) 

Let us first consider the average survival probability for the spatially 
fractal process of Section 4.1. There we showed that the q dependence of 
the eigenvalue 2l(t/) is of the form [-cf. (4.16)] 

2l(r/) = A,t/-u (5.6) 

where # is the L6vy exponent. The integrals that must be performed to 
calculate F(t) are of the form 

and thus 

It(t ) = Cz fo  dtl p(q) e ,A,, ,, (5.7) 

o0 
F(t)= }' It(t) (5.8) 

/ = 0  

One can evaluate (5.7) asymptotically using Laplace's method. For a 
Poisson distribution of intervals [cf. (5.4)] one obtains the survival 
probability 

F(t)~((2F)~#bt)l/(2~+2)( 7z )1/2 ~ 2(#~F l i  C'A:/~2"+2) 
/ = 0  

Note that each term in the sum has the same time dependence. At long 
times we can approximate (5.9) by the l =  0 term: 

F(t)~(--~--f ) l/2 (F~-~) l/(2u+ 2) (bt) '/(2u+ 2) 

exp [ - ( #  1 ) ( ~ )  ~/(~+ 1) ] X + - -  (bt)l/(u+l)j 

= 7~ t l/(2u + 2) e - fl/~tl/(l +#} ( 5 . 1 0 )  
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For # = 2, as pointed out earlier, the single trapping points at +_ q com- 
pletely prevent returns from outside the interval and therefore (5.10) is then 
exact (aside from the quadrature evaluation): 

8 )1/2 
F( t ) lu=2~ ~ (F2bt)l/6exp[-3(V~/2) 2/3t173 ] (5.11) 

Other analyses using approximate approaches relying on the distribution of 
spans in an unbounded diffusive process lead to survival probabilities 
F(t)~ct  m exp(-btl/3). The coefficient b in those analyses is smaller by a 
factor of (2) 1/3 than that in (5.11). In addition, whereas our prefactor 
increases a s  t 1/6, theirs increases at t 1/2. The physical reason why (5.11) 
gives a lower survival probability than previously obtained is that our 
initial value is confined to a given interval whereas in some applications 
one initializes the system in any of an ensemble of intervals. 

For/~ < 2 we again point out that the expression (5.1) for the survival 
probability for a fixed q is approximate, but that the approximation seems 
to be a good one (at least for 1 ~</~ < 2). In this sense, (5.10) is then also an 
approximation that one expects to be quite accurate. We note that the form 
(5.10) differs from the Weibull distribution F ( t ) ~ e x p ( - t  ~) usually 
assumed in failure studies. 

Let us next consider the average survival probability when the dis- 
tribution of intervals is Gaussian [cf. (5.5)]. Now we obtain 

F(t) 
(# + 2) 1/2 t=o 

(5.121 

The leading term of (5.12) at long times is again the l =  0 term: 

4 
F(t) ~(#+ 2)1/2 

~ c~'~, exp(-fl '~ t 2/(" + 2)) (5.13) 
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For # = 2 the entire series (5.12) can in fact be summed exactly, with the 
result 

1 
F(t) = 4(7~3)1/2 sech[2~(ybt) 1/2] tanh[2~z(Tbt) 1/2 ] (5.14a) 

1 _ 2~(~bt)~/2 (5.14b) 
t~ oo 2(7~3)1/2 e 

which agrees with (5.13) when # =  2. Note that (5.13) has the form of a 
Weibull distribution. 

Now let us consider a process describable by a Fokker Planck 
equation. For  some choices of the drift m~(x) and diffusion mz(X), the 
mean first passage time has the form T~0/)~t/" [cf. (5.6)] but unlike a 
fractal process # here is greater than 2. For  example, if mz(X ) is a constant 
and ml(x), , ,x/(a2+x 2) then Tl(t/)~l/3. For these cases the results (5.10) 
and (5.13) for Poisson and Gaussian interval distributions, respectively, are 
valid with the appropriate #. We stress again that for such diffusive 
processes the survival time formulation in terms of absorbing boundaries is 
exact. For  most Fokker-Planck processes the mean first passage time 
increases more rapidly than algebraic and, correspondingly, the survival 
probability at a given time is increased. As an example let us consider the 
average survival probability for a linear dissipative process, i.e., one with 
mz(x)=D and m~(x)= -2x .  The mean first passage time to i t /  has the 
asymptotic form 

~__~_~ { 2D "] ~/2 e ;.~2/2z) 
(5.15) 

~(~)  2 \ ,~ / 

With F(r/, t ) ~ e x p [ - t / T ~ ( t l ) ]  in (5.2) we obtain the following averge sur- 
vival probability when p(t/) has the Poisson form (5.4): 

F(t) exp{-2F ' [ ln (22t /x / -~  F ' ) ]  1/2} (5.16) 

[ln(Z2t/x/-~ F ' ) ]  1/4 

where U -  F(2D/2) ~/2. When p(rl) is Gaussian as in (5.5), then 

l - -  4 7 '  

F(t) [ln(2t/47' x/-s ~/2 (5.17) 

where y '=2D7/2.  We thus see that the survival probabilities of 
Fokker-Planck processes decay much more slowly (essentially 
algebraically) than do those for the Lhvy processes. 
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6. SUMMARY 

Let us summarize the major  points of the preceding sections: 

1. For  statistically independent processes, extrema can be categorized 
by three types of distributions. Each of these extrema distributions is 
characterized by parameters determined from phenonomenological  
probability distributions deduced from the data. For  many purposes this 
formulation of extremal statistics is adequate. 

2. One may wish to understand the relation of the phenomenologicaI 
probability distribution to the underlying dynamical process. For diffusive 
processes this relation is well established and provides analytic asymptotic 
expressions for the survival probability. These expressions rely entirely on 
knowledge of the steady-state properties of the system. 

3. For  nondiffusive processes the relation between the underlying 
dynamics and the extrema distribution is less well known. We provide 
approximate results that appear  to be satisfactory in those cases where a 
basis for comparison is available. For  nondiffusive processes one needs to 
know the dynamical behavior (and not just the steady state properties) of 
the system in order to arrive at these results. 

4. One must distinguish between survival probabilities when failure 
occurs at a preset level from those that involve a probabili ty of  failure at 
each level. In the former case the survival probabili ty depends on the level, 
whereas in the latter an average over levels is performed. This averaging 
procedure can profoundly influence the time dependence of the survival 
probability. 
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